“二维条形码”的版本间的差异

来自产品维基百科
跳转至: 导航搜索
3设备分类
4涉及概念
第45行: 第45行:
  
 
==4涉及概念==
 
==4涉及概念==
 +
1、堆叠式二维条形码(2D Stacked Code)
 +
 +
堆叠式二维条形码是一种多层符号(Multi-Row Symbology),通常是将一维条形码的高度截短再层叠起来表示资料。
 +
 +
2、矩阵式二维条形码(2D Matrix Code)
 +
 +
矩阵式二维条形码是一种由中心点到与中心点固定距离的多边形单元所组成的图形,用来表示资料及其它与符号相关功能。
 +
 +
3、资料字元(Data Character)
 +
 +
用于表示特定资料的ASCII字元集的一个字母、数字或特殊符号等字元。
 +
 +
4、符号字元(Symbol Character)
 +
 +
依条形码符号规则定义来表示资料的线条、空白组合形式。资料字元与符号字元间不一定是一对一的关系。一般情况下,每个符号字元分配一个唯一的值。
 +
 +
5、代码集(Code Set)
 +
 +
代码集是指将资料字元转化为符号字元值的方法。
 +
 +
6、字码(Codeword)
 +
 +
字码是指符号字元的值,为原始资料转换为符号字元过程的一个中间值,一种条形码的字码数决定了该类条形码所有符号字元的数量。
 +
 +
7、字元自我检查(Character Self-Checking)
 +
 +
字元自我检查是指在一个符号字元中出现单一的印刷错误时,扫描器不会将该符号字元解码成其它符号字元的特性。
 +
 +
8、错误纠正字元(Error Correction Character)
 +
 +
用于错误侦测和错误纠正的符号字元,这些字元是由其它符号字元计算而得,二维条形码一般有多个错误纠正字元用于错误侦测以及错误纠正。有些线性扫描器有一个错误纠正字元用于侦测错误。
 +
 +
9、E错误纠正(Erasure Correction)
 +
 +
E错误是指在已知位置上因图像对比度不够,或有大污点等原因造成该位置符号字元无法辨识,因此又称为拒读错误。通过错误纠正字元对E错误的恢复称为E错误纠正。对于每个E错误的纠正仅需一个错误纠正字元。
 +
 +
10、T错误纠正(Error Correction)
 +
 +
T错误是指因某种原因将一个符号字元识读为其它符号字元的错误,因此又称为替代错误。T错误的位置以及该位置的正确值都是未知的,因此对每个T错误的纠正需要两个错误纠正字元,一个用于找出位置,另一个用于纠正错误。
 +
 +
11、错误侦测(Error Detection)
 +
 +
一般是保留一些错误纠正字元用于错误侦测,这些字元被称为侦测字元,用以侦测出符号中不超出错误纠正容量的错误数量,从而保证符号不被读错。此外,也可利用软体透过侦测无效错误纠正的计算结果提供错误侦测功能。若仅为E错误纠正则不提供错误侦测功能。
 +
 +
特点
 +
 +
1.高密度编码:信息容量大:比普通条码信息容量约高几十倍。
 +
 +
2.编码范围广:该条码可以把图片、声音、文字、签字、指纹等可以数字化的信息进行编码,用条码表示出来;可以表示多种语言文字;可表示图像数据。
 +
 +
3.容错能力强:具有纠错功能:这使得二维条码因穿孔、污损等引起局部损坏时,照样可以正确得到识读,损毁面积达50%仍可恢复信息。
 +
 +
4.译码可靠性高:它比普通条码译码错误率百万分之二要低得多,误码率不超过千万分之一。
 +
 +
5.可引入加密措施:保密性、防伪性好。
 +
 +
6.成本低,易制作,持久耐用。
 +
 +
7.条码符号形状、尺寸大小比例可变。
 +
 +
8.二维条码可以使用激光或CCD阅读器识读。
 +
 
==5码制==
 
==5码制==
 
==6数据编码==
 
==6数据编码==

2018年4月7日 (六) 04:31的版本

二维条形码

二维码又称QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar Code条形码能存更多的信息,也能表示更多的数据类型。

二维条码/二维码(2-dimensional bar code)用某种特定的几何图形按一定规律在平面(二维方向上)分布的黑白相间的图形记录数据符号信息的;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。

2016年8月3日,支付清算协会向支付机构下发《条码支付业务规范》(征求意见稿),意见稿中明确指出支付机构开展条码业务需要遵循的安全标准。这是央行在2014年叫停二维码支付以后首次官方承认二维码支付地位。

目录

1历史简介

二维码技术诞生于20世纪40年代初,但得到实际应用和迅速发展还是在近20年间。在通用商品条码的应用系统中,最先采用的是一维码,国外对二维码技术的研究始于20世纪80年代,在二维码符号表示技术研究方面,已研制出多种码制,常见的有PDF417,QR Code,Code 49,Code 16K,Code One等。这些二维码的密度都比传统的一维码有了较大的提高。专家介绍说,在二维码标准化研究方面,国际自动识别制造商协会(AIM)、美国标准化协会(ANSI)已完成了PDF417,QR Code,Code 49,Code 16K,Code One等码制的符号标准。在二维码设备开发研制、生产方面,美国、日本等国的设备制造商生产的识读设备、符号生成设备,已广泛应用于各类二维码应用系统。

二维码作为一种全新的信息存储、传递和识别技术,自诞生之日起就得到了许多国家的关注。据了解,美国、德国、日本、墨西哥、埃及、哥伦比亚、巴林、新加坡、菲律宾、南非、加拿大等国,不仅将二维码技术应用于公安、外交、军事等部门对各类证件的管理,而且也将二维码应用于海关、税务等部门对各类报表和票据的管理,商业、交通运输等部门对商品及货物运输的管理,邮政部门对邮政包裹的管理,工业生产领域对工业生产线的自动化管理。二维码的应用极大地提高了数据采集和信息处理的速度,改善了人们的工作和生活环境,为管理的科学化和现代化做出了重要贡献。

2两大分类

近年来,随着资料自动收集技术的发展,用条形码符号表示更多资讯的要求与日俱增,而一维条形码最大资料长度通常不超过15个字元,故多用以存放关键索引值(Key),仅可作为一种资料标识,不能对产品进行描述,因此需透过网路到资料库抓取更多的资料项目,因此在缺乏网路或资料库的状况下,一维条形码便失去意义。此外一维条形码有一个明显的缺点,即垂直方向不携带资料,故资料密度偏低。当初这样设计有二个目的:(1) 为了保证局部损坏的条形码仍可正确辨识,(2) 使扫描容易完成。

要提高资料密度,又要在一个固定面积上印出所需资料,可用二种方法来解决:

(1) 在一维条形码的基础上向二维条形码方向扩展,

(2) 利用图像识别原理,采用新的几何形体和结构设计出二维条形码。前者发展出堆叠式(Stacked)二维条形码,后者则有矩阵式(Matrix)二维条形码之发展,构成现今二维条形码的两大类型。

堆叠式二维条形码的编码原理是建立在一维条形码的基础上,将一维条形码的高度变窄,再依需要堆成多行,其在编码设计、检查原理、识读方式等方面都继承了一维条形码的特点,但由于行数增加,对行的辨别、解码算法及软体则与一维条形码有所不同。较具代表性的堆叠式二维条形码有PDF417, Code16K, Supercode, Code49等。

矩阵式二维条形码是以矩阵的形式组成,在矩阵相应元素位置上,用点(Dot)的出现表示二进制的 "1",不出现表示二进制的 "0",点的排列组合确定了矩阵码所代表的意义。其中点可以是方点、圆点或其它形状的点。矩阵码是建立在电脑图像处理技术、组合编码原理等基础上的图形符号自动辨识的码制,已较不适合用"条形码"称之。具有代表性的矩阵式二维条形码有 Datamatrix, Maxicode, Vericode, Softstrip, Code1, Philips Dot Code等。

二维条形码的新技术在1980年代晚期逐渐被重视,在"资料储存量大"、"资讯随着产品走"、"可以传真影印"、"错误纠正能力高"等四大特性下,二维条形码在1990年代初期已逐渐被使用。

3设备分类

二维码设备分为两类:二维码识读设备和二维码打印设备。

二维码识读设备是用来读取条码信息的设备。它使用一个光学装置将条码的条空信息转换成电平信息,再由专用译码器翻译成相应的数据信息。

二维码识读设备一般不需要驱动程序,接上后可直接使用,如同键盘一样。二维码扫描设备从形式上有手持式和固定式两种。

条码打印设备主要是用于二维码标签的打印。

目前,打印二维码标签有两种方式:二维码打印机打印方式和软件配合激光打印机方式。

现在二维码应用软件也日趋增多,很多带有二维码生成功能的软件可使文字、图片生成二维码来应用。

折叠

4涉及概念

1、堆叠式二维条形码(2D Stacked Code)

堆叠式二维条形码是一种多层符号(Multi-Row Symbology),通常是将一维条形码的高度截短再层叠起来表示资料。

2、矩阵式二维条形码(2D Matrix Code)

矩阵式二维条形码是一种由中心点到与中心点固定距离的多边形单元所组成的图形,用来表示资料及其它与符号相关功能。

3、资料字元(Data Character)

用于表示特定资料的ASCII字元集的一个字母、数字或特殊符号等字元。

4、符号字元(Symbol Character)

依条形码符号规则定义来表示资料的线条、空白组合形式。资料字元与符号字元间不一定是一对一的关系。一般情况下,每个符号字元分配一个唯一的值。

5、代码集(Code Set)

代码集是指将资料字元转化为符号字元值的方法。

6、字码(Codeword)

字码是指符号字元的值,为原始资料转换为符号字元过程的一个中间值,一种条形码的字码数决定了该类条形码所有符号字元的数量。

7、字元自我检查(Character Self-Checking)

字元自我检查是指在一个符号字元中出现单一的印刷错误时,扫描器不会将该符号字元解码成其它符号字元的特性。

8、错误纠正字元(Error Correction Character)

用于错误侦测和错误纠正的符号字元,这些字元是由其它符号字元计算而得,二维条形码一般有多个错误纠正字元用于错误侦测以及错误纠正。有些线性扫描器有一个错误纠正字元用于侦测错误。

9、E错误纠正(Erasure Correction)

E错误是指在已知位置上因图像对比度不够,或有大污点等原因造成该位置符号字元无法辨识,因此又称为拒读错误。通过错误纠正字元对E错误的恢复称为E错误纠正。对于每个E错误的纠正仅需一个错误纠正字元。

10、T错误纠正(Error Correction)

T错误是指因某种原因将一个符号字元识读为其它符号字元的错误,因此又称为替代错误。T错误的位置以及该位置的正确值都是未知的,因此对每个T错误的纠正需要两个错误纠正字元,一个用于找出位置,另一个用于纠正错误。

11、错误侦测(Error Detection)

一般是保留一些错误纠正字元用于错误侦测,这些字元被称为侦测字元,用以侦测出符号中不超出错误纠正容量的错误数量,从而保证符号不被读错。此外,也可利用软体透过侦测无效错误纠正的计算结果提供错误侦测功能。若仅为E错误纠正则不提供错误侦测功能。

特点

1.高密度编码:信息容量大:比普通条码信息容量约高几十倍。

2.编码范围广:该条码可以把图片、声音、文字、签字、指纹等可以数字化的信息进行编码,用条码表示出来;可以表示多种语言文字;可表示图像数据。

3.容错能力强:具有纠错功能:这使得二维条码因穿孔、污损等引起局部损坏时,照样可以正确得到识读,损毁面积达50%仍可恢复信息。

4.译码可靠性高:它比普通条码译码错误率百万分之二要低得多,误码率不超过千万分之一。

5.可引入加密措施:保密性、防伪性好。

6.成本低,易制作,持久耐用。

7.条码符号形状、尺寸大小比例可变。

8.二维条码可以使用激光或CCD阅读器识读。

5码制

6数据编码

7社会应用

8识别方法

9对比评鉴

10国际标准